



# **₩** UNIVERSITY OF **Hull**

# **1. Introduction**

# Silent Speech Interfaces (SSIs)

### Motivation

- Patients with larynx cancer often lose their voice after *laryngectomy*.
- Existing methods for voice restoration are unsatisfactory.
- SSIs enable speech communication when the audible acoustic signal is unavailable by exploiting other speech-related biosignals.
- Devices for capturing articulator motion data: cameras, ultrasound, surface electrodes or **PMA**.

### • SSI approaches

a) ASR from articulator motion data + TTS synthesis.

b) Direct transformation of the articulator data to audible speech.

## About this Work

### • Summary

- In previous work we have shown that it is possible to recognise speech from PMA data.
- Here, we investigate the use of shared Gaussian process dynamical models (SGPDMs) for articulatory-to-acoustic conversion.
- Results are reported in which audible speech is synthesised from PMA data for two speakers with no speech impairment.
- Preliminary results are very promising, outperforming state-of-the-art GMM-based conversion, but further investigation is needed.
- The ultimate goal is to restore the ability to communicate to laryngectomees.





### How PMA works

- Small magnets are attached to the lips and tongue of the patient.
- The magnetic field generated when the patient 'speaks' is captured by the magnetic sensors.
- PMA does not provide the exact position of the magnets.

# **A Non-Parametric Articulatory-to-Acoustic Conversion System** for Silent Speech using Shared Gaussian Process Dynamical Models

(1) Dept. Computer Science, University of Sheffield, UK; (2) School of Engineering, University of Hull, UK

Jose A. Gonzalez<sup>1</sup>, Phil D. Green<sup>1</sup>, Roger K. Moore<sup>1</sup>, Lam A. Cheah<sup>2</sup>, and James M. Gilbert<sup>2</sup>

$$('||^2) + \frac{\delta_{h,h'}}{\beta_3}$$
  
RBF+linear kernel:

$$+ \alpha_3 \mathbf{h}^T \mathbf{h}' + \frac{\delta_{\mathbf{h},\mathbf{h}'}}{\alpha_4}$$

|                      | 4. I                                                                                                             |
|----------------------|------------------------------------------------------------------------------------------------------------------|
| Conditions           |                                                                                                                  |
| Database             | <ul> <li>Isolated digits</li> <li>PMA and spec</li> <li>Two native En</li> <li>Amount of date</li> </ul>         |
| Feature extraction   | <ul> <li>Speech signal</li> <li>PMA signal: fe</li> <li>Speech is syn</li> </ul>                                 |
| Objective evaluation | <ul> <li>The Mel-Ceps</li> <li>10-fold cross-</li> <li>SGPDM mapp</li> <li>32-compo</li> <li>Both MMS</li> </ul> |
| Roculto              |                                                                                                                  |

## **NESUIIS**

- Experiment 1

| Speaker | GMM  |      | SGPDM     |           |           |
|---------|------|------|-----------|-----------|-----------|
|         | MMSE | MLE  | $D_h = 3$ | $D_h = 5$ | $D_h = 7$ |
| Male    | 5.71 | 5.04 | 4.37      | 4.64      | 4.72      |
| Female  | 5.99 | 5.92 | 4.70      | 4.89      | 5.01      |
| Average | 5.85 | 5.48 | 4.54      | 4.77      | 4.87      |

# • Experiment 2

## The transformation is now estimated from sequences of isolated digits.

| Speaker | GMM  |      | SGPDM     |           |           |
|---------|------|------|-----------|-----------|-----------|
|         | MMSE | MLE  | $D_h = 3$ | $D_h = 5$ | $D_h = 7$ |
| Male    | 5.04 | 5.05 | 4.74      | 5.22      | 5.05      |
| Female  | 5.57 | 5.64 | 4.82      | 5.71      | 5.97      |
| Average | 5.31 | 5.35 | 4.78      | 5.47      | 5.51      |

Example: Digit sequence reconstruction



- mapping based on GMMs.
- Future research
  - Evaluation: more complex task & more speakers.



# **Experiments**

ech data were recorded simultaneously.

nglish speakers (with no speech impairment): male & female.

ta: 7.2 minutes (male) & 8.46 minutes (female speaker).

I: 25 MFCCs computed every 10ms [Fs:16khz, window length:20ms]. eatures extracted by Partial Least Squares [9 channels @ 100Hz]. thesised with no voicing (i.e. as whispered speech).

tral distortion measure is used to evaluate reconstruction accuracy. validation scheme is used.

ping is compared with GMM-based mapping proposed by Toda'2007. onent GMM is employed.

SE and MLE estimation algorithms are evaluated.

### - Conversion is performed using a model trained on the same digit.

# **5.** Conclusions

- We have presented a non-parametric approach for articulatory-toacoustic conversion using shared Gaussian process dynamical models.

- Results demonstrate that the approach outperforms state-of-the-art

# Model: introduce switching states & evaluate other kernel functions.