
Problem Formulation

• Generative model

– Mapping between PMA vectors 𝒙𝑡 and speech parameter ones 𝒚𝑡:

𝒚𝑡 = 𝒇(𝒙𝑡)

– We assume that 𝒙𝑡 and 𝒚𝑡 are the outputs of an underlying stochastic

process with hidden state 𝒉𝑡:

𝒙𝑡 = 𝒇𝑥 𝒉𝑡 + 𝝐𝑥
𝒚𝑡 = 𝒇𝑦 𝒉𝑡 + 𝝐𝑦

– Two problems

– Training: estimation of 𝑝 𝒙𝑡 𝒉𝑡 , 𝑝 𝒚𝑡 𝒉𝑡 and 𝑝 𝒉𝑡 𝒉𝑡−1 .

– Conversion: estimate the most likely sequence of speech

parameter vectors for the source sequence 𝐗 = (𝒙1, 𝒙2, … ).

Shared Gaussian Process Dynamical Models

• Statistical modelling

– Gaussian processes

𝑝 𝒛|𝒉 = 𝑁(𝑚(𝒉), 𝑘 𝒉, 𝒉′ )

𝑚(𝒉) and 𝑘 𝒉, 𝒉′ are the mean and covariance (kernel) functions.

– In a SGPDM we have several GPs sharing the same latent space + a

dynamical model in the latent space.

– Data modelling

– 𝑚 𝒉 = 𝟎.

– An RBF kernel is used for the observation models:e RBF

𝑘𝑥 𝒉, 𝒉′ = 𝛽1 exp −
𝛽2
2

𝒉 − 𝒉′ 2 +
𝛿𝒉,𝒉′

𝛽3
– For the dynamical model, we use an RBF+linear kernel:ernel

𝑘𝐻 𝒉, 𝒉′ = 𝛼1 exp −
𝛼2
2

𝒉 − 𝒉′ 2 + 𝛼3𝒉
𝑇𝒉′ +
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𝛼4
• Training and conversion phases

4. Experiments

Conditions

Results

• Experiment 1

– Conversion is performed using a model trained on the same digit.

• Experiment 2

– The transformation is now estimated from sequences of isolated digits.

• Example: Digit sequence reconstruction

5. Conclusions

– We have presented a non-parametric approach for articulatory-to-

acoustic conversion using shared Gaussian process dynamical models.

– Results demonstrate that the approach outperforms state-of-the-art

mapping based on GMMs.

– Future research

• Evaluation: more complex task & more speakers.

• Model: introduce switching states & evaluate other kernel functions.
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1. Introduction

Silent Speech Interfaces (SSIs)

• Motivation

– Patients with larynx cancer often lose their voice after laryngectomy.

– Existing methods for voice restoration are unsatisfactory.

– SSIs enable speech communication when the audible acoustic signal

is unavailable by exploiting other speech-related biosignals.

– Devices for capturing articulator motion data: cameras, ultrasound,

surface electrodes or PMA.

• SSI approaches

a) ASR from articulator motion data + TTS synthesis.

b) Direct transformation of the articulator data to audible speech.

About this Work

• Summary

– In previous work we have shown that it is possible to recognise

speech from PMA data.

– Here, we investigate the use of shared Gaussian process dynamical

models (SGPDMs) for articulatory-to-acoustic conversion .

– Results are reported in which audible speech is synthesised from

PMA data for two speakers with no speech impairment.

– Preliminary results are very promising, outperforming state-of-the-art

GMM-based conversion, but further investigation is needed.

– The ultimate goal is to restore the ability to communicate to

laryngectomees.

2. Permanent Magnet Articulography (PMA)

• How PMA works

– Small magnets are attached to the lips and tongue of the patient.

– The magnetic field generated when the patient ‘speaks’ is captured by

the magnetic sensors.

– PMA does not provide the exact position of the magnets.

3. Articulatory-to-Acoustic Mapping

Database

– Isolated digits.

– PMA and speech data were recorded simultaneously.

– Two native English speakers (with no speech impairment): male & female.

– Amount of data: 7.2 minutes (male) & 8.46 minutes (female speaker).

Feature extraction
– Speech signal: 25 MFCCs computed every 10ms [Fs:16khz, window length:20ms].

– PMA signal: features extracted by Partial Least Squares [9 channels @ 100Hz].

– Speech is synthesised with no voicing (i.e. as whispered speech).

Objective evaluation

– The Mel-Cepstral distortion measure is used to evaluate reconstruction accuracy.

– 10-fold cross-validation scheme is used.

– SGPDM mapping is compared with GMM-based mapping proposed by Toda’2007.

– 32-component GMM is employed.

– Both MMSE and MLE estimation algorithms are evaluated.
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Training Conversion

• Model parameters: kernels 

hyperparameters 𝜶,𝜷, 𝜸 and shared latent 

coordinates 𝑯.

• Loss function:

ℒ ≡ 𝑝 𝑯,𝜶, 𝜷, 𝜸 𝑿, 𝒀 ∝
𝑝 𝑿 𝑯,𝜶 𝑝 𝒀 𝑯,𝜷 𝑝 𝑯 𝜸 𝑝 𝜶 𝑝 𝜷 𝑝 𝜸

• Uninformative priors are chosen for 𝜶,𝜷, 𝜸 .

• ℒ is optimised using the SCG algorithm.

• 𝑯 is initialised using canonical correlation 

analysis (CCA).

• The latent sequence 𝑯∗ for 𝑿 is initialised 

using the Viterbi algorithm.

• Transition probabilities given by 

𝑝 𝒉𝑡 𝒉𝑡−1 .
• Observation probabilities given by 

𝑝(𝒙𝑡|𝒉𝑡).
• Next, 𝑯∗ is refined using the SCG algorithm.

• Finally,  𝒀 is just the mean of 𝑝 𝒀 𝑯∗ .

Speaker
GMM SGPDM

MMSE MLE 𝐷ℎ = 3 𝐷ℎ = 5 𝐷ℎ = 7

Male 5.71 5.04 4.37 4.64 4.72

Female 5.99 5.92 4.70 4.89 5.01

Average 5.85 5.48 4.54 4.77 4.87

Speaker
GMM SGPDM

MMSE MLE 𝐷ℎ = 3 𝐷ℎ = 5 𝐷ℎ = 7

Male 5.04 5.05 4.74 5.22 5.05

Female 5.57 5.64 4.82 5.71 5.97

Average 5.31 5.35 4.78 5.47 5.51

Utterance: zero nine
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