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Abstract
To help people who have lost their voice following total laryn-
gectomy, we present a speech restoration system that produces
audible speech from articulator movement. The speech articula-
tors are monitored by sensing changes in magnetic field caused
by movements of small magnets attached to the lips and tongue.
Then, articulator movement is mapped to a sequence of speech
parameter vectors using a transformation learned from simulta-
neous recordings of speech and articulatory data. In this work,
this transformation is performed using a type of recurrent neural
network (RNN) with fixed latency, which is suitable for real-
time processing. The system is evaluated on a phonetically-
rich database with simultaneous recordings of speech and artic-
ulatory data made by non-impaired subjects. Experimental re-
sults show that our RNN-based mapping obtains more accurate
speech reconstructions (evaluated using objective quality met-
rics and a listening test) than articulatory-to-acoustic mappings
using Gaussian mixture models (GMMs) or deep neural net-
works (DNNs). Moreover, our fixed-latency RNN architecture
provides comparable performance to an utterance-level batch
mapping using bidirectional RNNs (BiRNNs).
Index Terms: speech rehabilitation, articulatory-to-acoustic
mapping, recurrent neural network, speech synthesis

1. Introduction
In our continuing effort [1–5] to develop an acceptable and dis-
creet speech restoration system for laryngectomees, here we
propose a novel technique for transforming data captured from
the speech articulators into audible speech. Inspired by recent
research, we deploy deep learning techniques [6] to model the
articulatory-to-acoustic mapping. In particular, we use recur-
rent neural networks, which have achieved state-of-the-art per-
formance in various speech tasks in recent years [7–10], to
model this mapping. Our speech restoration system is built
around permanent magnet articulography (PMA) [1, 2, 11, 12],
a technique for capturing the movement of the speech articula-
tors by sensing changes in magnetic field generated by a set of
small magnets attached to the articulators. The rest of the paper
describes our speech restoration system and its evaluation using
recordings made by non-impaired speakers.

2. Speech synthesis from articulator
movement

To synthesise speech from PMA data, we adopt a data-driven
approach in which the articulatory-to-acoustic mapping is learnt

from data. In particular, a parallel dataset with simultaneous
recordings of speech and PMA data is used1. More formally,
our goal is to model parametrically the following mapping func-
tion between source feature vectors xt computed from the PMA
signal and target speech feature vectors yt extracted, for in-
stance, using a vocoder:

yt = f(x1, . . . ,xt+ω) + ε, (1)

where t is the frame index and ε is a zero-mean Gaussian-
distributed approximation error. In addition to the past and cur-
rent source vectors, we also consider for the mapping ω future
source vectors as this often improves the mapping accuracy at
the expense of introducing a small delay in the conversion pro-
cess [4, 5, 13]. Provided that this delay is less than 50 ms, we
will be able to restore the articulatory-auditory feedback with-
out causing disfluencies or mental stress on the speaker [14,15].

To model the mapping function in (1), we use gated RNNs.
A gated RNNs is a type of artificial neural network particu-
larly suited for modelling temporal sequences with long-time
dependencies which does not exhibit the problem of vanish-
ing/exploding gradients as other RNN architectures do. Two
well-known gated RNN architectures are the long short-term
memory (LSTM) [16] and the gated recurrent unit (GRU) [17].
In a set of preliminary experiments, both RNN architectures
achieved similar results on our mapping problem, but the GRU-
RNNs had lower training times due to having fewer parameters.
Hence, in the following, we describe how to apply GRU-RNNs
for modelling (1).

A GRU-RNN consists of a set of recurrently connected
blocks, each one representing a GRU block. Similarly to DNNs,
to increase the modelling power, several layers of GRU blocks
can be stacked to create a deep RNN. The inputs of the block
at layer l are the hidden activations of the previous layer hl−1

t

(with h0
t = xt) and its activations in the previous time in-

stant hl
t−1. The outputs hl

t of the block are computed by it-
eratively applying the following composite activation function
for t = 1, . . . , T + ω and l = 1, . . . , L [17]:
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1Parallel recordings should be made soon after the patient has been
diagnosed with laryngeal cancer and can still speak.



where � represents element-wise multiplication between two
vectors, σ is the logistic sigmoid function, and r, u and h̃ are
the reset gate, update gate and candidate activation, respectively.
These gates regulate the flow of information through the block
and the update of the block’s hidden state hl

t. The weight ma-
trices W , V and bias vectors b are trainable parameters of the
RNN.

Finally, the speech features are computed from the hidden
activations of the last hidden layer as follows,

yt = φ(Wyh
L
t+ω + by), (6)

where Wy and by are the trainable weight matrix and bias vec-
tor of the output layer and φ is the output activation function.
For regression problems with continuous targets, φ is the iden-
tity function, i.e. φ(z) = z. For binary classification problems,
a logistic sigmoid function is used, i.e. φ(z) = 1/(1+exp(z)).
Lastly, for multiclass classification problems, the standard soft-
max function is used.

To estimate the network’s parameters, a stochastic version
of the back propagation through time (BPTT) algorithm [18] is
employed.

3. Experiments
To evaluate the proposed speech restoration system, we
recorded parallel data for several non-impaired subjects. At this
stage, our goal is to refine the hardware and conversion algo-
rithms to have a consistent speech quality before attempting to
evaluate the system on real patients. Hence, the task in this work
is to predict the speech recorded by the subjects from the PMA
data. The details of the evaluation framework are provided be-
low.

3.1. Parallel database

Six non-impaired British subjects participated in this study: 4
males (M1 to M4) and 2 females (F1 and F2). For each subject,
articulatory data was recorded in synchrony with the speech for
a random subset of the CMU Arctic corpus of phonetically-rich
sentences [19]. The amount of data recorded by each subject is
given in Table 1.

Data recording was conducted in an acoustically-isolated
room as follows. Lips and tongue movement was captured using
the PMA device described in [11]. Six cylindrical neodymium-
iron-boron magnets were temporarily glued to the articulators
using tissue adhesive to track their movements: two on the up-
per lip, two on the lower lip, one at the tongue tip and, finally,
one on the tongue blade. The magnetic field variations caused
by the magnets were then measured by 3 tri-axial magnetore-
sistive sensors sampled at 100 Hz. Subjects’ speech was si-
multaneously recorded using a AKG C1000S condenser micro-
phone located about 20 cm from the subject at a sampling rate
of 48 kHz. Later, the signals were digitally downsampled to 16
kHz. More details about the recording protocol can be found
in [4, 11].

3.2. Signal processing

Speech and PMA signals are parametrized as sequences of fea-
ture vectors computed every 5 ms from 25 ms length analysis
windows. The STRAIGHT vocoder [20] is used to parametrize
the speech signals as 32-dimensional feature vectors: spectral
envelope is encoded as 25 Mel-Frequency Cepstral Coefficients
(MFCCs) [21] and the remaining 7 parameters represent the ex-

Table 1: Details of the parallel PMA-and-speech database
recorded for the experiments.

Subject No. of sentences Amount of data
F1 353 20 min
F2 432 22 min
M1 420 22 min
M2 470 28 min
M3 509 26 min
M4 519 35 min

citation signal as 5-band aperiodicities (BAPs) (0-1, 1-2, 2-4, 4-
6, 6-8 kHz), unvoiced/voiced (U/V) decision and continuous F0

in logarithmic scale (logF0 is linearly interpolated in unvoiced
frames). PMA signals, on the other hard, are firstly oversam-
pled from 100 Hz to 200 Hz to match the 5 ms analysis rate.
Data frames are then extracted from the oversampled signals at
the same frame rate as the speech signals. To improve the per-
formance, the GMM and DNN based mappings described be-
low are trained with segmental features computed by applying
the partial least squares (PLS) dimensionality reduction tech-
nique [22] over short symmetric windows with δ consecutive
PMA frames. Finally, the PMA and speech features are nor-
malised in mean and variance.

3.3. Model training

Speaker-dependent RNN models are trained for each speech
feature type (i.e. MFCCs, BAPs, logF0, and U/V decision) us-
ing the subject’s recordings. To determine the best RNN archi-
tecture, we conducted a set of preliminary experiments using a
development dataset. We found that RNNs with 4 hidden layers
and 150 GRUs in each layer provide the best objective results
for our data (using more layers or more units per layer only
gives marginal improvements). Regarding the length of look-
ahead window used by the RNNs, in our previous work [5] we
found that using ω = 10 inputs in the future (i.e. a latency of
50 ms) provides a good trade-off between mapping latency and
accuracy, so we use the same value here.

RNN training and inference are implemented using Tensor-
Flow [23]. In training, the RNN weights are initialized ran-
domly (without pretraining) and optimised using the Adam al-
gorithm [24] with minibatches of 50 sentences and a learning
rate of 3e-3. As a regularization technique, we add white noise
to the inputs (σnoise = 0.5). We employ the sum-of-squared
errors (SSE) loss when optimizing the RNN parameters for the
continuous speech features (MFCCs, BAPs, and logF0) and the
cross-entropy function for the U/V decision. RNNs are trained
for 100 epochs or until the error on a validation set does not
improve after 20 epochs.

For comparison purposes, we also evaluate mappings us-
ing GMMs [4, 25, 26] and DNNs [13, 27], which have been
successfully applied by ourselves and other authors to model
the articulatory-to-acoustic mapping. For a fair comparison,
GMMs and DNNs with approximately the same number of pa-
rameters as the RNN architecture (˜1/2 million parameters) are
employed. The GMMs have 128 mixtures with full covariance
matrices. DNNs with 4 hidden layers and 400 rectified linear
units (ReLUs) in each layer are used. Moreover, again for a
fair comparison, those models are trained with segmental fea-
tures computed from symmetric windows with δ = 21 frames
(i.e. the length of the look-ahead window is ω = 10 frames
as in the RNNs). In both mappings, the maximum likelihood
parameter generation (MLPG) algorithm considering dynamic
features proposed in [25, 28] is applied to smooth out the pre-
dicted speech feature trajectories, as has been repeatedly shown



Table 2: Objective results for the mapping techniques.
MCD BAP F0 U/V error
(dB) (dB) RMSE (Hz) rate (%)

GMM 5.84 4.56 26.30 18.71
DNN 5.74 4.68 26.13 15.88
RNN 5.56 4.50 23.77 13.23
BiRNN 5.52 4.52 24.87 13.12

[25, 26, 29, 30], MLPG outperforms the basic frame-by-frame
mappings in terms of objective and perceived speech quality.

Finally, BiRNNs [31,32], which perform an utterance-level
batch mapping, are also evaluated in this work. Although
BiRNNs are not suitable for real-time processing, it is inter-
esting to compare their performance with that obtained by the
proposed fixed-lag RNN architecture above.

3.4. Performance evaluation

A 10-fold cross-validation scheme is used to assess the per-
formance of the proposed techniques. Performance was mea-
sured using objective and subjective quality metrics. To ob-
jectively evaluate mapping performance, the Mel-cepstral dis-
tortion (MCD) (dB) [33], root mean squared error (RMSE) of
band aperiodicities (dB), RMSE of F0 on a linear scale, and
U/V error rate (%) metrics are used. These objective metrics
are known to not correlate well with perceived speech quality,
but are useful for comparing performance among different tech-
niques and for tuning the systems. We also conducted a listen-
ing test to subjectively evaluate the techniques. The details of
the listening test are provided below.

4. Results
Table 2 summarises the average across all subjects of the ob-
jective results for the mapping techniques2. The best result for
each metric is in bold. Clearly, the mappings using neural net-
works outperform the more traditional GMM-based mapping in
all the objective measures (except for the aperiodicities, where
GMM outperforms DNN). Moreover, it is also clear that both
types of RNN produce significantly better results than the DNN.
For instance, the relative improvements of BiRNN wrt DNN
are 3.83%, 3.42%, 4.82% and 17.38%, for metrics MCD to
U/V error rate. Although the MLPG algorithm used to post-
process the DNN predictions makes use of all past and future
contexts (as the BiRNNs), the recurrent networks are better at
modelling the sequential nature of speech compared to the sim-
ple smoothing carried out by this algorithm. The improvement
of RNN and BiRNN over DNN is particularly noticeable for the
excitation parameters (F0 and voicing), for which the recurrent
networks more accurately capture their long-term correlations.
From the comparison between the RNN and BiRNN methods,
we see that RNN achieves comparable performance to BiRNN
(actually, the RNN mapping obtain better results for the aperi-
odicities and F0 parameters), but with much lower latency.

We also conducted an ABX listening test to subjectively
evaluate speech quality. In the test, listeners heard a reference
sample (one of the signals recorded by the subjects) and two
versions of it produced by any of the 4 mapping techniques.
Listeners were asked to judge which of the resynthesised sam-
ples was more similar to the reference. Each of the 18 listen-
ers who participated in the test evaluated 10 sample pairs for
each of the 6 possible mapping combinations (i.e. 60 pair eval-

2Speech samples generated by the mapping techniques can be found
at http://www.jandresgonzalez.com/is2017
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Figure 1: Results of the ABX test on speech quality.
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Figure 2: Frame-wise phoneme classification results for the
audio and PMA modalities.

uated in total). Fig. 1 shows the results of the listening test.
As expected, speech generated by the RNN-based systems is
preferred to that synthesised by the other mappings. Encourag-
ingly, the RNN and BiRNN mappings are considered equally
good, despite BiRNNs having the potential advantage of ex-
ploiting all the future context while RNNs only looks a little
way into the future. Therefore, in the rest of this paper, we will
only focus in the RNN-based mapping. Interestingly, GMMs
obtained higher subjective scores than DNNs despite the latter
achieving better objective results in Table 2. By listening to the
speech samples generated by both mappings, the problem seems
to be that the DNN samples sounds ‘buzzy’, which might be re-
lated to the fact that this method obtained the worse results for
the BAPs in Table 2.

Next, we conducted a speech recognition experiment to de-
termine the limitations of PMA and the fixed-lag RNN mapping
for phonetic modelling. In this experiment, we trained RNNs
to perform framewise phoneme classification from either au-
dio or PMA data. Phone-level transcriptions for training the
RNNs were obtained by force-aligning the audio signals using
a speaker-dependent, triphone-based speech recogniser. Fig. 2
shows the recognition results for all subjects in the database.
Firstly, we see that significantly better recognition results are
obtained when using audio: the average phone error rate (PER)
across all subjects is 32.68% for the audio and 43.95% for PMA.
Also, the recognition results using PMA are significantly better
for the male than the female subjects. As discussed in [4], this
might be due to the fact that the PMA prototype was designed
to fit the head anatomy of subject M1. Interestingly, the best
recognition results are obtained for M4, who recorded more
data and also and took care to speak clearly and slowly (133
words per minute (wpm) compared to an average of 174 wpm
for the other subjects).

Fig. 3 shows the phone confusions averaged across all sub-
jects for PMA. To sum up, it can be seen that the major confu-
sions are for the following phones:

• Vowels: /ah/ (30% accuracy), /ax/ (40%), /ea/ (38%), /ia/

http://www.jandresgonzalez.com/is2017


aa ae ah ao aw a
x

a
y b ch d

d
h ea eh er ey
f g

h
h ia ih iy jh k l
m n n
g

oh ow o
y p r s

sh
t

th u
a

u
h

u
w v w y z
zh

Predicted

aa
ae
ah
ao
aw
ax
ay
b

ch
d

dh
ea
eh
er
ey

f
g

hh
ia
ih
iy
jh
k
l

m
n

ng
oh
ow
oy
p
r
s

sh
t

th
ua
uh
uw

v
w
y
z

zh

R
ef

er
en

ce

0%

10%

20%

30%

40%

50%

60%

70%

80%

Figure 3: Normalized confusion matrix for phoneme classifica-
tion from PMA data.

Table 3: Objective results of the RNN-based mapping for dif-
ferent types of input features.

Input features MCD BAP F0 U/V error
(dB) (dB) RMSE (Hz) rate (%)

PMA 5.56 4.50 23.77 13.23
Phones 4.95 3.72 22.70 8.84
Senones 5.15 3.85 22.97 9.28
PMA+Phones 4.75 3.79 22.81 9.18
PMA+Senones 4.90 3.88 22.88 9.65

(30%), /ua/ (15%) and /uh/ (9%), which are mainly con-
fused with other vowels with similar articulation.

• Plosive consonants: /p/ (33%), /b/ (26%), /d/ (40%).
For these phones, most errors are voicing confusions
(e.g. /b/→/p/ (20% confusions), /d/→/t/ (17%), /p/→/b/
(18%)) and manner confusions (e.g. /b/→/m/ (24%),
/d/→/n/ (22%), /p/→/m/ (18%)). As discussed in [4,34],
those aspects of speech articulation (i.e. voicing and
manner) are not well captured by PMA.

• Consonants articulated at the back of the mouth: velars
/g/ (17% accuracy), /k/ (58%) and /ng/ (37%), and glottal
/hh/ (17%). PMA fails to model those areas because no
magnet were attached to them in our experiments.

• Fricatives: /th/ (35%), /zh/ (0%) and /v/ (38%). Most
errors correspond to voicing confusions: /th/→/dh/ (36%
confusions), /zh/→/sh/ (59%) and /v/→/f/ (25%).

• Affricates: /ch/ (40%) and /jh/ (37%).

From results in Figs. 2 and 3, we can conclude that PMA
does not capture the movements of some vocal tract areas well.
While these limitations could in principle be addressed in fu-
ture work, we ask ourselves if it also possible to address them
from a machine learning perspective: by exploiting linguistic
information as a prior knowledge in the conversion process.
To shed some light into this question, we designed an experi-
ment to compare the performance of the RNN-based mapping
trained with different input features: PMA features, linguistic
features3 (either phone or senone labels), and both PMA and
linguistic features. In this oracle experiment, linguistic features
are obtained from the force-aligned phonetic transcriptions of
the audio signals, but in a real-system they could be obtained

3The resulting mapping could be seen as a very basic TTS system.
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Figure 4: Relative improvement in MCD per phone category
when using PMA+Phones features wrt just using PMA features.

by running a speech recogniser in parallel with our mapping
technique.

Table 3 shows the objective results for each type of feature.
Clearly, the linguistic features provide more information than
the PMA data alone, but when both types of feature are com-
bined together, the resulting system obtains better results than
the separate systems (except for the excitation parameters, for
which the best results are obtained using only phone labels4).
Thus, it seems that the two types of feature provide comple-
mentary information. While it might be difficult to obtain these
improvements in a real system due to automatic speech recogni-
tion (ASR) errors, the results seem to indicate that, indeed, the
exploitation of linguistic knowledge might be useful for obtain-
ing better speech quality in PMA-to-acoustic mapping. Finally,
Fig. 4 shows the relative improvement in the MCD metric of the
PMA+Phones system wrt the baseline system using only PMA
features. Not surprisingly, the biggest improvements are for the
sounds that PMA has most problems with: phones articulated
at the back of the mouth (palatal, velar and glottal consonants),
plosives and nasals.

5. Conclusions
We have described a technique for synthesising speech from ar-
ticulatory data acquired through PMA, which could potentially
restore speech after laryngectomy. Through an extensive eval-
uation, we have shown that our method produces reasonable
speech quality and with room for improvement either by im-
proving the sensing technique or by introducing linguistic con-
straints in the conversion process. We are about to enter a clini-
cal trial where our system will be evaluated on real patients.
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